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1. INTRODUCTION

The real valued generalized biaxisymmetric potentials (GBASP) FCcr..al
regular in the open unit hypersphere };ccr..al about the origin can be expanded
uniquely as

F(cr.·a)(x, y) = L anR~cr.·8)(x, Y),
n~O

ex > ~ > -1/2 (I)

in terms of the complete set

R~cr.,a)(x, y) = (x2 + y2t p~cr..al(x2 _ y2/X2 + l)/p~·8)(1),

n = 0, I, 2,... (2)

of biaxisymmetric harmonic polynomials. These even functions are classical
solutions to the generalized biaxisymmetric potential equation

(~ + 2ex + I ~ +~ + 2~ + 1 ~) FCcr..al = 0 (3)
ox2 x ox oy2 Y oy

subject to the Cauchy data

F;cr.,al(O, y) = F~cr.·a>cx, 0) = 0

along the singular lines in };ccr..al.

Let us consider interpretations of this equation for some special values
of the parameters ex,~. If 2ex + 1 and 2~ + 1 are non-negative integers,
then the coordinates
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interpret as a hypercircle on the intersection of hypercylinders through the
point (Xl , •.• , X2~+2 ,YI , ••• , Y213+2) E E2(~+I3+2), and Eq. (3) is equivalent to the
biaxisymmetric Laplace equation. The limit ex ! f3 produces the generalized
axisymmetric potential equation, and the zonal harmonics corresponding
to (2),

n = 0,1,... ,

after a quadratic transformation [I, p. 21], form a complete set for regular
even generalized axisymmetric potentials (GASP). Reduction of the GASP
equation to the harmonic equation E2 follows from the lim ex ! -t that
also reduces the zonal harmonics to the circular harmonics,

n = 0, I, 2, ... [I, p. 7] which analytically continue from the singular axis as
the even polynomials

n = 0, 1,2,... ,

Z = X + iy E C. These functions form complete sets for even harmonic,
respectively analytic functions, regular at the origin. The GBASP, then,
are natural extensions of harmonic or analytic functions. Hence, we anti
cipate properties similar to those of the harmonic functions found from
associated analytic f, by taking Ref, the real part off Concurrently, we seek
operators analogous to Re.

The Bergman [2, 27] and Gilbert [6, 7] Integral Operator Method produced
invertible operators generalizing Ref that successfully extend a variety of
coefficient properties of anahrtic functions. These relate the growth of the
Fourier coefficients of GBASP to the classification of its singularities, zeros,
and extrema, creating analogies of the Theorems of Hadamard [4,6],
Caratheodory-Toeplitz [14, 25] and Caratheodory-Fejer [10, 15-17].
Essentially local information results. For the entire function GASP, the
coefficients also provide global information. The growth characteristics
of order and type of GASP, defined from the maximum modulus as in func
tion theory [I I], can be computed from the Fourier coefficients [5, 8].
As in the classical Markusevic-Gel'fond theorem [12], they are requisite
in the construction of complete families of harmonic polynomials which
approximate entire function GASP uniformly on simply connected axi
symmetric compact sets [5]. For harmonic polynomial interpolation of
GASP, the reader is referred to [13].

Analytic function theory also develops properties off from the growth of
various polynomial approximates measured in the Chebyshev sense. The
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theorem of S. N. Bernstein [3] identifies real entire analytic functions via
such approximates and extends to determine the (positive finite) order and
type by formulas due to R. S. Varga [26]. These techniques were incorporated
with the Integral Operator Method in [18] to identity an entire function GASP
from the convergence rate of the best axisymmetric harmonic polynomial
approximates in the Chebyshev norm (c-norms). This characterizes a GASP,
regular in an open hypersphere and continuous on its closure, that harmoni
cally continues as an entire function GASP. Additionally, the order and type
are defined explicitly as functions of the convergence rate of the c-norms.
These appear analogous to Gilbert's coefficient formulas [8] for order and
type. Also, they mirror the classifications of R. S. Varga [26] for entire
analytic functions by relating the accuracy of local polynomial approximation
of a GASP to its global existence and growth.

The preceding ideas extend in several directions. From the potential
theoretic aspect, the order and type of an entire function GBASP can be
defined to include those with zero or infinite order and transcendental
GBASP with zero type. Order and type are then computed from the Fourier
coefficients as in the formulas of A. R. Reddy [21-24] which generalize
the growth-coefficient characterizations for analytic functions of finite order
and type. Convergence properties of the c-norms, defined as in the axisym
metric case, measuring the error in the best harmonic polynomial approxi
mates to real GBASP regular in an open hypersphere and continuous on its
closure, identify those that exist globally and apply to the calculation of order
and type as in analytic function theory [21-23]. These generalizations of the
theory of analytic functions lead from local approximation properties to
global characterization of solutions to the GASP equation.

The principal vehicle is an integral operator (and inverse) essentially
developed in [16] which is an isometry between even analytic functions of
one complex variable and GBASP on suitable domains of definition. We
briefly list the properties of the operator and inverse in

2. BASIC FORMULA

Let the operator mapping unique associated even analytic functions

onto GBASP

00

f(z) = L anz2n,

n~O

z = x + iyeC (4)

00

F(iX.S)(X, y) = L anR~iX.S)(x, y),
n~O

IX > f3 > -1/2 (5)
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(6)

be defined as in [15-16] from Koornwinder's integral for Jacobi polynomials
[I, p. 32] as

FCa,fJJ(x, y) = .Yt:x,sCf) = f rfm dJLa,lJ(t, s)
o 0

~2 = x2 - y2t2+ i 2xyt cos s

Ya,lJ = 2r(cx + l)jr(lj2) r(cx - fJ) r(fl + Ij2).

The inverse operator applies orthogonality of the Jacobi polynomials [1, p. 8]
and the Poisson kernel [1, p. 11] to uniquely define the transform

J
+1

fez) = .X'"a--:MF(a.IJ» = F(a,IJ)(rg, r(l - e)1/2) dVa,lJ(z2jr2, g)
-1

dVa,IJ(T, g) = Sa.sCT, g)(l - g)a (1 + g)1J dg

whose kernel is written with the aid of (1, p. 12) in closed form as

(7)

. cx + fl + 3 . fl + l' 2T(l + g) )
, 2 ' '(l + T)2

'Y]a,1J = r(cx + f3 + 2)j2a+IJ+1 r(cx + I) r(fl + 1).

The measures are normalized so that Jt";.~(l) = .Yt:x,IJ(l) = 1. The Envelope
Method [6, 7] easily establishes that the GBASP F(a,lJl is regular in the hyper
sphere .E1a,lJl: x2+ y2 < R2 if, and only if its associate f is analytic in the
disk DR: x2+ y2 < R2. On the singular axis y = 0, the identity

f(x + iO) = F(a.IJ)(x, 0),

can be analytically continued as

fez) = F(a,{J)(z, 0),

Ix! <R

Izi < R

(8)

via the Law of Permanence of Functional Equations to recover the associate.
These facts are summarized in

THEOREM 1. For each GRASP F(a,lJ) regular in the hypersphere .E~a.lJ)

there is a unique .Yt:x.1J associated even function f analytic in the disk DR and
conversely,
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Having established these basic formulas, we consider our first objective
which is

3. GROWTH OF ENTIRE FUNCTION GBASP

The maximum moduli of GBASP and associate are defined as in complex
function theory [21, p. 129, 132],

m(r, f) = max 1f(z) 1
Izl=r

M(r, FCex,S») = max IF(ex,S)(x, Y)I
x 2+y2=r2

as are the upper and lower orders

P(k, j) _ r sup lk+jM(r, F(ex,S»)
A(k, j) - ;~ inf '1+1r

p(k, j) _ r sup lk+jm(r, f)
A(k,j) - ,l~ inf '1+1r

and upper and lower types

T(k) _ lim sup 'kM(r, F(ex,S»)
Q(k) - '->00 inf rP(k) ,

T(k) = lim sup 'km(r, f)
w(k) ,->X> inf roCk)

[21, p. 129] with 'kx = log log ... (k times) x.
The classification of index is k if p(k - 1) = 00, p(k) < 00 where

P(k,O) = P(k) P(2,0) = P

p(k, 0) = p(k) p(2, 0) = p

with logarithmic order (p = 0)

p(l, 1) = PI' p(1, 1) = PI

and logarithmic type (1 < PI < (0)

Tl l' '2M(r, F(ex.S))= 1m
Q l ,->00 inf '2r

Tl = lim ~up '2m(r, f)
WI ,->oo!Df '2r
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The essential equivalence of corresponding quantities for GBASP and asso
ciate is considered in

TmOREM 2. Let Flex.13l be a real valued entire function GRASP with .:Kcx.8
associate f Then the upper and lower orders and upper and lower types of
£lex.8) and f respectively are identical. This is true of the logarithmic orders
and types as well.

Proof Let us consider the relation for Flex.8),

F(ex.8)(x, y) = .:Kcx.if)

defined globally by Theorem 1. The non-negativity and the normalization
of the measure lead directly to the bound

M(r, Flex.l3l) :(; m(r,!)

and the consequent inequality

Ik+jM(r, Flex.8)) c<: [k+jm(r, f)
IHIr "" [HIr

The inverse relation,

also valid globally by Theorem 1, leads to the estimates

(9)

and

However, for z = €rei8 (€ real)

m(€r, f) :(; M(r, F(ex.8») N ex .8(T)

gives

and

From the inequalities (9) and (10), the requisite conclusions concerning upper
and lower orders follow directly. Using equality of the orders, it is apparent
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that similar reasoning establishes the asserted equality of the upper and lower
types.

Having established equality of the respective upper and lower orders
and types of GBASP and associate, we shall henceforth indicate them in the
lower case symbols. We remark that the classifications are necessarily inde
pendent of the dimension of the space (parameters (ex, f3)) containing the
domain of the GBASP because of the normalization. For the same reason,
this independence of (ex, f3) is effectively the case for the developments con
cerning approximation. As typical examples of Theorem 2 we consider the
following

COROLLARY 2.1. Necessary and Sufficient conditions that the GRASP

F(~·IJ)(x, y) = f anR~~·IJ)(x, y)
n~O

be an entire function of

(i) index k and order p(k) is

lim sup(nllfl/log(I/1 an I)) = p(k)
or

(ii) index k with order p = p(k) > 0 and type T(k) are

lim sup .!!..- I an Ipln = T(k)
pe

and

or

(iii) logarithmic order Pt and type Tt are

lim sup(lln/l(-1/nll(1 an I))) = PI - 1

and

(n/PtY'
lim sup -(-_----,l~l!.,!I~a!..-n-'-1)-P-'--l = Tt .

PI - I

Proof By Theorem 1, F(~·IJ) is entire if, and only if, the associate is entire.
Moreover, the order and type of the associate agree. Consequently, to prove;
(i) we cite [21, p. 130] Lemma 1, (ii) [21, p. 130] Lemma 3 and (iii) [21, p. 131]
Lemma 5 and 7. Note that (ii) is the biaxisymmetric version of Gilbert's
transplant theorem [6, p. 188] of [11; 4, p. 293] when index k = 1.

From the previous reasoning, it appears that the bulk of references [21-23]
concerning the relations among orders and types of analytic functions and
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(11)

their Taylor's coefficients extends to GBASP quid pro quo. We shall not do
this verbatim, but cite the above result as representative. This same philos
ophy applies to the interrelations of order and type that are next considered in

4. POLYNOMIAL ApPROXIMATION

Let the Chebyshev norms [21, p. 128] (c-norms) be defined for
f E C([-1, +1]) and p<ex./l) E C(817(ex./l») as

en(f) = inf{llf - P 11* ; P E An} n = 0, 1,2,...

Ilf - P 11* = sup If(x) - p(x)1
XE[-l,l]

II Flex./l) - P(ex./l) II = sup I p<ex·8)(x, y) - P(ex·/l)(x, Y)I.
X2+y2~1

and

En(F(ex./l») = inffll F(ex./l) _ p(ex.s) II; p(ex.s) E £,~ex./l)}, n = 0,1,2,...
(12)

The set An contains all real polynomials of degree atmost 2n, and the set
£,~./l) contains all real biaxisymmetric harmonic polynomials of degree
atmost 2n. The operators .x:../l and J(";,~ establish one-one equivalence of
the sets An and £,~ex,8). The existence of GBASP globally and growth of the
c-norms En is taken up in

THEOREM 3. Let p<ex./l) be a real valued GRASP regular in 17(ex./l) and con~

tinuous on E(ex./l) and k be a positive integer. Then both

k>l

and

are finite if, and only if, p<ex./l) has an analytic continuation as an entire function
GRASP of index k, with order p(k) > °and type T(k)finite.

Proof Let the real GBASP p<ex,/l) be regular in 17(ex./l) and continuous
on E(ex./l). Let the above listed limits be satisfied by the polynomial approxi
mations of F(ex./l) on 817(ex./l) relative to the c-norm. The associate f is analytic
in D and continuous at x = ± 1 where it coincides with F(ex.8) so that appli
cation of the maximum principle to Eq. (8) gives

If(x) - p(x)1 = IF(ex'8)(x, 0) - P(ex,/l)(x, 0)1 ::( II p<ex./l) - P(ex./l) II,
I x [ ::( 1 for p E lin and P(ex./l) = .x:../l(p).
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(13)

For each given E > 0, there correspond m1 = m1(E), subsequence ni = n;(E)
and polynomials P(rt,S) E .n"~~,S) such that

En(Prt,S») - E ~ II F(rt,S) - pert,S) II ~ En/Prt,S)) + E (14)

for index nj > m1(E). Combining these gives

(15)

On the assumption concerning the value of first limit there IS an
m2 = m2(E) such that for n ?: m2 ,

(16)

a quantity ultimately less than 1 for some integer ma = ma(E). Then for
n ?: max{m1 , m2 , ma}, we have

ne~/nu) ~ njE~jnj(F(rt'S») + E

and

(I n) eP1n(f) ~ (I n·) Ep1n;(FCr:t.S») + E
k-1 n '"" k-1' nj •

Also the inequalities

lim sup ne~/nu) ~ lim sup nE~rn(FCr:t.s»)

and

hold, identifying the associatef(see [21, p. 134]) as an entire function of order
at most p(k). From this fact and the normalization of the ~,s transform,
it follows that

II prt,S) - P(rt.S) II ~ sup If(z) - p(z)1 == Ilf - P II,
Izl<1

and from inequality (14) it follows that

En(F(rt,S») - E ~ e:U) (17)

e:U) = inf{llf - P 11; P E An}, 11 = 0, 1, 2, ....
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To compare the norms e* and en , expand the even entire function f in a
Chebyshev series [20, p. 91] as

fez) = exo + 2 L exn Tn(Z2).
n~l

The extremal polynomial P E IlN has the expansion

N

p(z) = exo + 2 L exn Tn(z2).
n~l

In the ellipse lffB : I z - I I + I z + I I ~ 28 (8 > 1), the inequalities

00

eN(f) ~ et(f) ~ Ilf - p II ~ 2 L (I exn I sup I Tn(Z2)1)
n~N+l Ii

hold since the Chebyshev polynomials Tn are entire functions of polynomial
growth. Thus

and

lim(e:(f) - en(f)) = O.

In view of Eq. (18), there is an m4 = mle) such that

(18)

e:(f) - E ~ en(f),

Combining (17) and (19) gives

En(Flo<,fJ») ~ en(f) + 2E,

Then

(19)

(20)

and

Thus the associate meets the same limiting requirements as the GBASP.
Consequently, (see Reddy [21, p. 134]) the associate is an entire function of
index k, order p(k) and type T(k). The same is true of the GBASP by
Theorem 2.

Conversely, let the real GBASP FCo<.fJ) regular in 1)<o<,fJ) and continuous on
ECo<,fJ) have extension as an entire GBASP of index k, order p(k) and type
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r(k). This is also true of the associate, which then meets the requisite limits
[21, p. 134]

and

lim sup neo/n(f) = (per) 2-0 , k>1

Since the associate clearly meets the analyticity and regularity requirements
of the first part of the proof, the previous reasoning and estimates apply and
establish those limits listed in the theorem.

As an application, the following analogy of the S. N. Bernstein theorem is
considered.

COROLLARY 3.1. Let the real valued GBASP pea..B) be regular in E(a.·B) and
continuous on 2(a..fJ). Then a necessary and sufficient condition that F(a.·B) be
the restriction ofan entire function GBASP is that

lim sup E~/n(F(a.·B») = O.

Proof If the above limit condition is satisfied by F(a.,S) in the hypothesis,
inequality (15) gives

lim e~/n(f) ~ lim sup E~/n(F(a.·B») = O.

By the classical Bernstein theorem [3; 23, p. 176]fis entire and hence so is
Fla.,B). Conversely, if Fla.·B) is entire, so isfand (20), the reverse to (15), holds.
Then application of (20) gives the inequality

lim sup E~/n(F(a.·B») ~ lim e~/n(f)

so that [23, p. 176] completes the reasoning. As a second application we
consider

CoROLLARY 3.2. Let the real valued GBASP Fla..B) be regular in E(a.,B) and
continuous on 2(a.,B). Then a necessary and sufficient condition that Fla.·B) be
the restriction of an entire function GBASP of order <lor of order 1 and
type 0 is

Proof Let F(a.·B), as in the hypothesis, be the restriction of an entire
GBASP of order p and type r; with Theorem 3 we have shown that

(21)
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Reasoning from Theorem 4 produces the analogy of the classical Varga
[26] result in

as the order of F(a,{3) and hence

as the order of the associate. Thus given E > 0 and n(E) > 0 we find as in
Theorem I [22, p. 101] that

(22)

for n ~ max{ml' m2 , m4}. Thus, if p < 1,

lim nE~/n(F(a.{3») = o.

If p = 1 and T = 0, we reason by the first equality in the statement
of Theorem 3 that

and then

which completes the proof by the previous coronary.
The next result is the potential-theoretic transplant of Varga's generalized

theorem [26, p. 132]

TIIEOREM 4. Let the real valued GBASP F(a,m be regular in 2:(a.m and
continuous on };(a.{3). Then F(a.r.> is the restriction to };(a,m of an entire
function GBASP of order p(k) = a if, and only if,

Proof. Let Fla,B) satisfy the hypothesis and the stated limit condition. Let
E > 0 be given, use (15) and monotonicity of II to give

(23)

as in Theorem 3. From (16), lim En < 1 so that the smaller term in (23)
is positive for all nj sufficiently large. Then for large nj > n,

nl1n njlknj
11(l/En(f)) ~ h(l/En,(F(a.{3») + E)

(24)
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However,

so that from (24)

for all indices n sufficiently large. For the reverse, use (20),

for all n sufficiently large. Then

with the smaller inequality holding for infinitely many indices. As above

so that

for infinitely many indices. Thus,

165

the order of entire function f GBASP F(rx,{3l is an entire function of the same
order. For brevity, the proof of the converse is omitted. We observe that
for k = 1, this formula is the biaxisymmetric version of the result in [18].

Our final application is with respect to GBASP with logarithmic order.

TIlEOREM 5. Let real valued GBASP F(rx,{3) be regular in 1:(rx,{3) and con
tinuous on };(rx,{3l. Then F(rx,fJ) is the restriction to };(rx,{3) of an entire function
GBASP of logarithmic order pz = 1 + 0: if, and only if,

= 0:,
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Proof Let real value GBASP F(~,IJ) described in the hypothesis satisfy the
asserted limit condition. From inequalities (15) and (I6) we find

for nj > n sufficiently large. Then

as in the previous theorem, we deduce

for all but finitely many indices. From (20) and the specified limit, one easily
finds

for infinitely many indices. Thus

with the smaller inequality valid for infinitely many indices and the larger
for all but finitely many. Consequently, the associate is an entire function of
logarithmic order p! = 1 + IX (see [21, p. 135]). The same holds of F(~,IJ).

The converse proof is similar.

4. REMARKS SUGGESTING FURTHER APPLICATIONS

To consider GBASP R~"',IJ) with parameters f3 > IX, refer to the symmetry
relation [1, p. 8] for Jacobi polynomials. The limit of R~"',8) as IX ! f3 indicates
the GBASP form of the results in sections 1-3.

The notions of regular growth and perfectly regular growth [22, p. 99-100]
are utilized by Reddy [22, p. l04ff.] to study the relative growth of c-norms
en(f) and Taylor coefficients an . Adopting the function theory definitions
for GBASP, we can use the operators (6-7) to show that a GBASP is of
regularjperfectly regular growth if, and only if, the associate is of regularj
perfectly regular growth. This suggests comparisons of the relative growths
of c-normsEnCF(~,IJ)andFouriercoefficient an' A similar study can be made of
proximate order, a refinement of type introduced in classical function theory.
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The Method of Ascent and the inverse Method of Descent (see [7]) con
struct maps between the linear space of harmonic functions and the linear
space of solutions of more general elliptic partial differential equations.
Direct generalization of the preceding is possible by composition of
operators for those biaxisymmetric equations whose lower order derivatives
have coefficients that permit construction of operators that are norm pre
serving maps between the linear space of entire function GBSAP and entire
function solutions. Equations whose coefficients do not have this property
suggest upper and lower estimates on the order and type and necessary or
sufficient conditions for the existence of solutions as entire functions.

Concerning those potentials that are not entire functions, the question
arises as to what information can be found from local approximates about
properties of the singularities. Chebyshev approximation of GASP that are
regular in a closed hypersphere by linear combinations of axisymmetric
harmonic polynomials and Newtonian potentials leads to characterization
of the singularities of the principal branch of the harmonic continuation of
the GASP [19].
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